8 research outputs found

    Subolesin expression in response to pathogen infection in ticks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ticks (Acari: Ixodidae) are vectors of pathogens worldwide that cause diseases in humans and animals. Ticks and pathogens have co-evolved molecular mechanisms that contribute to their mutual development and survival. Subolesin was discovered as a tick protective antigen and was subsequently shown to be similar in structure and function to akirins, an evolutionarily conserved group of proteins in insects and vertebrates that controls NF-kB-dependent and independent expression of innate immune response genes. The objective of this study was to investigate subolesin expression in several tick species infected with a variety of pathogens and to determine the effect of subolesin gene knockdown on pathogen infection. In the first experiment, subolesin expression was characterized in ticks experimentally infected with the cattle pathogen, <it>Anaplasma marginale</it>. Subolesin expression was then characterized in questing or feeding adult ticks confirmed to be infected with <it>Anaplasma</it>, <it>Ehrlichia</it>, <it>Rickettsia</it>, <it>Babesia </it>or <it>Theileria </it>spp. Finally, the effect of subolesin knockdown by RNA interference (RNAi) on tick infection was analyzed in <it>Dermacentor variabilis </it>males exposed to various pathogens by capillary feeding (CF).</p> <p>Results</p> <p>Subolesin expression increased with pathogen infection in the salivary glands but not in the guts of tick vector species infected with <it>A. marginale</it>. When analyzed in whole ticks, subolesin expression varied between tick species and in response to different pathogens. As reported previously, subolesin knockdown in <it>D. variabilis </it>infected with <it>A. marginale </it>and other tick-borne pathogens resulted in lower infection levels, while infection with <it>Francisella tularensis </it>increased in ticks after RNAi. When non-tick-borne pathogens were fed to ticks by CF, subolesin RNAi did not affect or resulted in lower infection levels in ticks. However, subolesin expression was upregulated in <it>D. variabilis </it>exposed to <it>Escherichia coli</it>, suggesting that although this pathogen may induce subolesin expression in ticks, silencing of this molecule reduced bacterial multiplication by a presently unknown mechanism.</p> <p>Conclusions</p> <p>Subolesin expression in infected ticks suggested that subolesin may be functionally important for tick innate immunity to pathogens, as has been reported for the akirins. However, subolesin expression and consequently subolesin-mediated innate immunity varied with the pathogen and tick tissue. Subolesin may plays a role in tick innate immunity in the salivary glands by limiting pathogen infection levels, but activates innate immunity only for some pathogen in the guts and other tissues. In addition, these results provided additional support for the role of subolesin in other molecular pathways including those required for tissue development and function and for pathogen infection and multiplication in ticks. Consequently, RNAi experiments demonstrated that subolesin knockdown in ticks may affect pathogen infection directly by reducing tick innate immunity that results in higher infection levels and indirectly by affecting tissue structure and function and the expression of genes that interfere with pathogen infection and multiplication. The impact of the direct or indirect effects of subolesin knockdown on pathogen infection may depend on several factors including specific tick-pathogen molecular interactions, pathogen life cycle in the tick and unknown mechanisms affected by subolesin function in the control of global gene expression in ticks.</p

    Oral re-vaccination of Eurasian wild boar with Mycobacterium bovis BCG yields a strong protective response against challenge with a field strain

    Get PDF
    Background: Field vaccination trials with Mycobacterium bovis BCG, an attenuated mutant of M. bovis, are ongoing in Spain, where the Eurasian wild boar (Sus scrofa) is regarded as the main driver of animal tuberculosis (TB). The oral baiting strategy consists in deploying vaccine baits twice each summer, in order to gain access to a high proportion of wild boar piglets. The aim of this study was to assess the response of wild boar to re-vaccination with BCG and to subsequent challenge with an M. bovis field strain.Results: BCG re-vaccinated wild boar showed reductions of 75.8% in lesion score and 66.9% in culture score, as compared to unvaccinated controls. Only one of nine vaccinated wild boar had a culture-confirmed lung infection, as compared to seven of eight controls. Serum antibody levels were highly variable and did not differ significantly between BCG re-vaccinated wild boar and controls. Gamma IFN levels differed significantly between BCG re-vaccinated wild boar and controls. The mRNA levels for IL-1b, C3 and MUT were significantly higher in vaccinated wild boar when compared to controls after vaccination and decreased after mycobacterial challenge.Conclusions: Oral re-vaccination of wild boar with BCG yields a strong protective response against challenge with a field strain. Moreover, re-vaccination of wild boar with BCG is not counterproductive. These findings are relevant given that re-vaccination is likely to happen under real (field) conditions.Peer reviewedVeterinary Pathobiolog

    Detection of <i>Babesia conradae</i> in Coyotes (<i>Canis latrans</i>) and Coyote-Hunting Greyhound Dogs (<i>Canis familiaris</i>)

    No full text
    Babesia conradae is a small piroplasm previously detected in coyote-hunting Greyhound dogs in California and Oklahoma. In dogs, B. conradae causes clinical signs similar to other tick-borne illnesses, and if not treated it can lead to acute kidney injury and other life-threating complications. To date, the life cycle of this apicomplexan parasite has not been fully described, but suggestions of direct contact or tick transmission have been proposed. The purpose of this study was to test coyote tissue samples from coyotes hunted by Greyhound dogs with a history of B. conradae infection to determine if this parasite is present in the coyote population in Northwestern Oklahoma. The analyzed tissue samples included liver, lung and tongue samples collected by hunters. DNA was isolated from these tissues and assessed by RT-PCR of the 18S rRNA and PCR of the COX1 genes for B. conradae. A total of 66 dogs and 38 coyotes were tested, and the results demonstrated the presence of B. conradae DNA in 21 dogs (31.8%) and 4 coyotes (10.5%). These results indicate that B. conradae is present in the dog and coyote population from the same area and that direct contact with coyotes may increase the risk of infection in dogs. Further studies are required to test possible modes of transmission, including direct bite, tick or vertical transmission

    Differential gene expression response to acute and chronic Cytauzxoon felis infection in domestic cats (Felis catus)

    No full text
    Cytauxzoonosis is a severe tick transmitted protozoan disease of domestic cats, caused by Cytauxzoon felis. The disease is characterized by acute onset of high fever, depression, lethargy, inappentence, anorexia, icterus, dehydration, hemolytic anemia, and alteration of immune response. The aim of our study was to further detail the immune response of domestic cats to C. felis infection by comparing the differential expression of feline immune transcriptional elements during acute and chronic cytauxzoonosis. True single molecule sequencing (tSMS) was used to analyze the whole genome of acutely and chronically infected C. felis cats, focusing on the analysis of genes involved on the immune response. Two C. felis donor cats were infested with Amblyomma americanum nymphs, which after repletion were collected and kept in humidity chambers until they molted. The resulting A. americanum were randomly selected to infest three C. felis naïve principal cats. Infection of these cats was confirmed by nested PCR of the 18S rRNA C. felis gene and clinical signs. RNA was extracted from whole blood at different time points and used for tSMS analyses, the results revealed overexpression in transcripts involved in type I interferon signaling, cellular and cytokine responses during the acute stage of infection, while cell cycle, and metabolic processes were downregulated. Genes involved in cell adhesion increased their expression in the chronic infected cats, whereas inflammatory and apoptotic related genes were downregulated. This study provided information on the host immune response to C. felis in domestic cats, demonstrating that inflammatory, apoptotic, and cell adhesion are some of the pathways altered during acute and chronic infection

    Babesiosis and Theileriosis in North America

    No full text
    Babesia and Theileria are apicomplexan parasites that cause established and emerging diseases in humans, domestic and wild animals. These protozoans are transmitted by Ixodid ticks causing babesiosis or theileriosis, both characterized by fever, hemolytic anemia, jaundice, and splenomegaly. In North America (NA), the most common species affecting humans is B. microti, which is distributed in the Northeastern and Upper Midwestern United States (US), where the tick vector Ixodes scapularis is established. In livestock, B. bovis and B. bigemina are the most important pathogens causing bovine babesiosis in tropical regions of Mexico. Despite efforts toward eradication of their tick vector, Rhipicephalus microplus, B. bovis and B. bigemina present a constant threat of being reintroduced into the southern US and represent a continuous concern for the US cattle industry. Occasional outbreaks of T. equi, and T. orientalis have occurred in horses and cattle, respectively, in the US, with significant economic implications for livestock including quarantine, production loss, and euthanasia of infected animals. In addition, a new species, T. haneyi, has been recently discovered in horses from the Mexico-US border. Domestic dogs are hosts to at least four species of Babesia in NA that may result in clinical disease that ranges from subclinical to acute, severe anemia. Herein we review the pathogenesis, diagnosis, and epidemiology of the most important diseases caused by Babesia and Theileria to humans, domestic and wild animals in Canada, the US, and Mexico
    corecore